Energy Storage Control with Aging Limitation

Pierre Haessig*, Hamid Ben Ahmed*, Bernard Multon*

* CentraleSupélec – IETR, * ENS Rennes — SATIE

PowerTech conference, Eindhoven, June 30, 2015

http://pierreh.eu

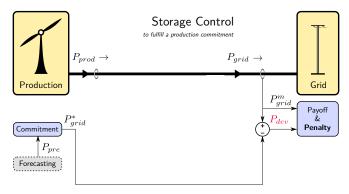
pierre.haessig@centralesupelec.fr

Outline of the presentation

1. Introduction to aging control

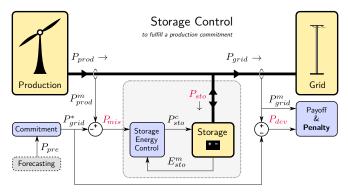
2. ESS control with aging limitation

3. Control evaluation on a simulation


4. Conclusion

Outline of the presentation

- 1. Introduction to aging control
- 2. ESS control with aging limitation
- 3. Control evaluation on a simulation
- 4. Conclusion


Why an Energy Storage System (ESS) ? example usage: a wind-storage system

Objective: the wind farm must respect a day-ahead commitment.

Why an Energy Storage System (ESS) ? example usage: a wind-storage system

Objective: the wind farm must respect a day-ahead commitment.

 \rightarrow an ESS is used to mitigate commitment errors:

$$P_{dev} = P_{mis} - P_{sto}$$

The issue of storage aging

Technological problem: ESS (electrochemical) can only perform a **limited number of charge/discharge cycles** over its lifetime.

To avoid the high cost of premature replacements, aging should be taken into account:

- in the system design: aging-aware ESS sizing
- in the energy management: aging-aware ESS control

The issue of storage aging

Technological problem: ESS (electrochemical) can only perform a **limited number of charge/discharge cycles** over its lifetime.

To avoid the high cost of premature replacements, aging should be taken into account:

- in the system design: aging-aware ESS sizing
- $\circ\,$ in the energy management: aging-aware ESS control

Main question being addressed How to embed the limitation of storage aging, as a strict constraint,

in the energy management optimization ?

aging constraint: $N_{cycl}(T_{life}) \le N_{life}$ example: $T_{life} = 20$ years, $N_{life} = 3000$ cycles

Modeling cycling aging

Cycling aging is modeled using the energy counting method:

$$N_{cycl}(t) = rac{1}{2E_{rated}} \int_{0}^{t} |P_{sto}| dt$$

exchanged energy

 $N_{cycl}(t)$ is the number of equivalent full cycles at each instant. (a simplified view of the complex physical processes of degradation)

Modeling cycling aging

Cycling aging is modeled using the energy counting method:

$$N_{cycl}(t) = rac{1}{2E_{rated}} \underbrace{\int_{0}^{t} |P_{sto}| dt}_{ ext{exchanged energy}}$$

 $N_{cycl}(t)$ is the number of *equivalent full cycles* at each instant. (a simplified view of the complex physical processes of degradation)

 \rightarrow aging constraint can be re-expressed as a constraint on the lifetime average of $|P_{sto}|$:

$$\langle |P_{sto}|
angle_{T_{life}} \leq P_{exch}$$
 with $P_{exch} = rac{2E_{rated}N_{life}}{T_{life}}$

ex:
$$E_{\textit{rated}} = 1 \text{ h}$$
, $N_{\textit{life}} = 3000$, $T_{\textit{life}} = 20 \text{ yr} \rightarrow P_{\textit{exch}} = 0.034 \text{ pu}$

Outline of the presentation

- 1. Introduction to aging control
- 2. ESS control with aging limitation
- 3. Control evaluation on a simulation
- 4. Conclusion

Optimal energy management

ESS energy management is treated as an **optimization problem**: minimize *J*, the *average* of an instant penalty *cost*:

$$J = \frac{1}{K} \mathbb{E} \left\{ \sum_{k=0}^{K-1} cost(k) \right\} \text{ with } K \to \infty$$

with $cost(k) = \max \left\{ 0, |P_{dev}(k)| - P_{tol} \right\}$

Optimal energy management

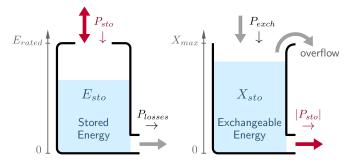
ESS energy management is treated as an **optimization problem**: minimize *J*, the *average* of an instant penalty *cost*:

$$J = rac{1}{K} \mathbb{E} \left\{ \sum_{k=0}^{K-1} cost(k)
ight\} \quad ext{with } K o \infty$$

with
$$\textit{cost}(k) = \max\left\{0, |P_{\textit{dev}}(k)| - P_{\textit{tol}}
ight\}$$

... while respecting the aging constraint:

$$\langle |P_{sto}|
angle_{T_{life}} \leq P_{exch}$$


Algorithmic difficulty of this optimization

a constraint on a T_{life} horizon (~10 years) is not manageable!

 \rightarrow a reformulation is needed

Reformulation of the aging constraints

To deal with cycling aging on a "reasonable" horizon, I introduce a new state variable: X_{sto} a buffer of "exchangeable energy":

The constraint of keeping this buffer non empty $(X_{sto} \ge 0)$ is a sufficient condition to satisfy the aging constraint $\langle |P_{sto}| \rangle_{T_{life}} \le P_{exch}$

Outline of the presentation

- 1. Introduction to aging control
- 2. ESS control with aging limitation
- 3. Control evaluation on a simulation
- 4. Conclusion

Validation test case

Input data for the simulation:

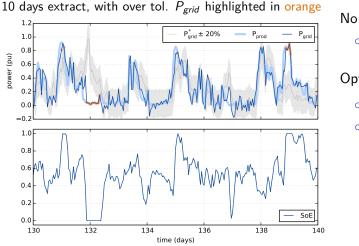
The ESS control is simulated with a 132 MW wind farm from NREL "Eastern Wind Dataset" (publicly available):

- $\circ\,$ 3 years of production/forecast data, with a 1 hour timestep.
- mean production of the farm: 0.343 pu
- RMS forecast error: $\sigma_P = 0.195 \text{ pu}.$

Validation test case

Input data for the simulation:

The ESS control is simulated with a 132 MW wind farm from NREL "Eastern Wind Dataset" (publicly available):

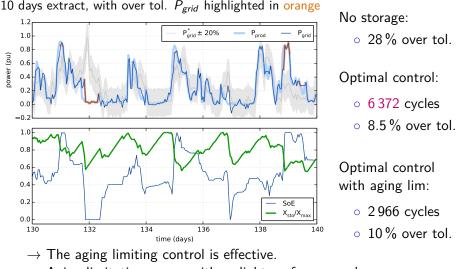

- $\circ\,$ 3 years of production/forecast data, with a 1 hour timestep.
- o mean production of the farm: 0.343 pu
- RMS forecast error: $\sigma_P = 0.195 \text{ pu}.$

Penalty for commitment errors:

The tolerance for the deviation penalty is set at 0.2 pu

Simulation results

No storage:

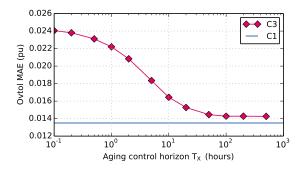

 $\circ~28\,\%$ over tol.

Optimal control:

• 6 372 cycles

• 8.5% over tol.

Simulation results



 \rightarrow Aging limitation comes with a slight performance drop.

Choosing the Aging Control Horizon

Our aging limiting control is based on a buffer of "exchangeable energy" X_{sto} . The buffer size (X_{max}) needs to be hand-picked.

Effect of the "aging control horizon" ($T_X = X_{max}/P_{exch}$)

 \rightarrow an horizon of 2-3 days is enough (for this example).

Outline of the presentation

- 1. Introduction to aging control
- 2. ESS control with aging limitation
- 3. Control evaluation on a simulation
- 4. Conclusion

Contribution

A formulation of cycling aging which fits naturally in the ESS control optimization.

Validated in a simulation with an open dataset.

Contribution

A formulation of cycling aging which fits naturally in the ESS control optimization.

Validated in a simulation with an open dataset.

Going further

Adapt the method to also deal with calendar aging.

(calendar aging often depends on operational conditions like SoE, in particular for super capacitors)